Struct OUTSTANDING_TRANSACTIONS

Source
pub(crate) struct OUTSTANDING_TRANSACTIONS {
    pub(crate) __private_field: (),
}
Expand description

A number that is non-zero if there are asynchronously triggered operations that have been triggered but not successfully completed yet. In practice, if this is non-zero, we will re-run the egui update function in order to ensure that we deal with the outstanding transactions eventually. When incrementing this, it is important to make sure that it gets decremented whenever the asynchronous transaction is completed, otherwise we will re-render things until program exit

Fields§

§__private_field: ()

Methods from Deref<Target = AtomicU32>§

1.34.0 · Source

pub fn load(&self, order: Ordering) -> u32

Loads a value from the atomic integer.

load takes an Ordering argument which describes the memory ordering of this operation. Possible values are SeqCst, Acquire and Relaxed.

§Panics

Panics if order is Release or AcqRel.

§Examples
use std::sync::atomic::{AtomicU32, Ordering};

let some_var = AtomicU32::new(5);

assert_eq!(some_var.load(Ordering::Relaxed), 5);
1.34.0 · Source

pub fn store(&self, val: u32, order: Ordering)

Stores a value into the atomic integer.

store takes an Ordering argument which describes the memory ordering of this operation. Possible values are SeqCst, Release and Relaxed.

§Panics

Panics if order is Acquire or AcqRel.

§Examples
use std::sync::atomic::{AtomicU32, Ordering};

let some_var = AtomicU32::new(5);

some_var.store(10, Ordering::Relaxed);
assert_eq!(some_var.load(Ordering::Relaxed), 10);
1.34.0 · Source

pub fn swap(&self, val: u32, order: Ordering) -> u32

Stores a value into the atomic integer, returning the previous value.

swap takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that using Acquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.

Note: This method is only available on platforms that support atomic operations on u32.

§Examples
use std::sync::atomic::{AtomicU32, Ordering};

let some_var = AtomicU32::new(5);

assert_eq!(some_var.swap(10, Ordering::Relaxed), 5);
1.34.0 · Source

pub fn compare_and_swap(&self, current: u32, new: u32, order: Ordering) -> u32

👎Deprecated since 1.50.0: Use compare_exchange or compare_exchange_weak instead

Stores a value into the atomic integer if the current value is the same as the current value.

The return value is always the previous value. If it is equal to current, then the value was updated.

compare_and_swap also takes an Ordering argument which describes the memory ordering of this operation. Notice that even when using AcqRel, the operation might fail and hence just perform an Acquire load, but not have Release semantics. Using Acquire makes the store part of this operation Relaxed if it happens, and using Release makes the load part Relaxed.

Note: This method is only available on platforms that support atomic operations on u32.

§Migrating to compare_exchange and compare_exchange_weak

compare_and_swap is equivalent to compare_exchange with the following mapping for memory orderings:

OriginalSuccessFailure
RelaxedRelaxedRelaxed
AcquireAcquireAcquire
ReleaseReleaseRelaxed
AcqRelAcqRelAcquire
SeqCstSeqCstSeqCst

compare_and_swap and compare_exchange also differ in their return type. You can use compare_exchange(...).unwrap_or_else(|x| x) to recover the behavior of compare_and_swap, but in most cases it is more idiomatic to check whether the return value is Ok or Err rather than to infer success vs failure based on the value that was read.

During migration, consider whether it makes sense to use compare_exchange_weak instead. compare_exchange_weak is allowed to fail spuriously even when the comparison succeeds, which allows the compiler to generate better assembly code when the compare and swap is used in a loop.

§Examples
use std::sync::atomic::{AtomicU32, Ordering};

let some_var = AtomicU32::new(5);

assert_eq!(some_var.compare_and_swap(5, 10, Ordering::Relaxed), 5);
assert_eq!(some_var.load(Ordering::Relaxed), 10);

assert_eq!(some_var.compare_and_swap(6, 12, Ordering::Relaxed), 10);
assert_eq!(some_var.load(Ordering::Relaxed), 10);
1.34.0 · Source

pub fn compare_exchange( &self, current: u32, new: u32, success: Ordering, failure: Ordering, ) -> Result<u32, u32>

Stores a value into the atomic integer if the current value is the same as the current value.

The return value is a result indicating whether the new value was written and containing the previous value. On success this value is guaranteed to be equal to current.

compare_exchange takes two Ordering arguments to describe the memory ordering of this operation. success describes the required ordering for the read-modify-write operation that takes place if the comparison with current succeeds. failure describes the required ordering for the load operation that takes place when the comparison fails. Using Acquire as success ordering makes the store part of this operation Relaxed, and using Release makes the successful load Relaxed. The failure ordering can only be SeqCst, Acquire or Relaxed.

Note: This method is only available on platforms that support atomic operations on u32.

§Examples
use std::sync::atomic::{AtomicU32, Ordering};

let some_var = AtomicU32::new(5);

assert_eq!(some_var.compare_exchange(5, 10,
                                     Ordering::Acquire,
                                     Ordering::Relaxed),
           Ok(5));
assert_eq!(some_var.load(Ordering::Relaxed), 10);

assert_eq!(some_var.compare_exchange(6, 12,
                                     Ordering::SeqCst,
                                     Ordering::Acquire),
           Err(10));
assert_eq!(some_var.load(Ordering::Relaxed), 10);
§Considerations

compare_exchange is a compare-and-swap operation and thus exhibits the usual downsides of CAS operations. In particular, a load of the value followed by a successful compare_exchange with the previous load does not ensure that other threads have not changed the value in the interim! This is usually important when the equality check in the compare_exchange is being used to check the identity of a value, but equality does not necessarily imply identity. This is a particularly common case for pointers, as a pointer holding the same address does not imply that the same object exists at that address! In this case, compare_exchange can lead to the ABA problem.

1.34.0 · Source

pub fn compare_exchange_weak( &self, current: u32, new: u32, success: Ordering, failure: Ordering, ) -> Result<u32, u32>

Stores a value into the atomic integer if the current value is the same as the current value.

Unlike AtomicU32::compare_exchange, this function is allowed to spuriously fail even when the comparison succeeds, which can result in more efficient code on some platforms. The return value is a result indicating whether the new value was written and containing the previous value.

compare_exchange_weak takes two Ordering arguments to describe the memory ordering of this operation. success describes the required ordering for the read-modify-write operation that takes place if the comparison with current succeeds. failure describes the required ordering for the load operation that takes place when the comparison fails. Using Acquire as success ordering makes the store part of this operation Relaxed, and using Release makes the successful load Relaxed. The failure ordering can only be SeqCst, Acquire or Relaxed.

Note: This method is only available on platforms that support atomic operations on u32.

§Examples
use std::sync::atomic::{AtomicU32, Ordering};

let val = AtomicU32::new(4);

let mut old = val.load(Ordering::Relaxed);
loop {
    let new = old * 2;
    match val.compare_exchange_weak(old, new, Ordering::SeqCst, Ordering::Relaxed) {
        Ok(_) => break,
        Err(x) => old = x,
    }
}
§Considerations

compare_exchange is a compare-and-swap operation and thus exhibits the usual downsides of CAS operations. In particular, a load of the value followed by a successful compare_exchange with the previous load does not ensure that other threads have not changed the value in the interim. This is usually important when the equality check in the compare_exchange is being used to check the identity of a value, but equality does not necessarily imply identity. This is a particularly common case for pointers, as a pointer holding the same address does not imply that the same object exists at that address! In this case, compare_exchange can lead to the ABA problem.

1.34.0 · Source

pub fn fetch_add(&self, val: u32, order: Ordering) -> u32

Adds to the current value, returning the previous value.

This operation wraps around on overflow.

fetch_add takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that using Acquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.

Note: This method is only available on platforms that support atomic operations on u32.

§Examples
use std::sync::atomic::{AtomicU32, Ordering};

let foo = AtomicU32::new(0);
assert_eq!(foo.fetch_add(10, Ordering::SeqCst), 0);
assert_eq!(foo.load(Ordering::SeqCst), 10);
1.34.0 · Source

pub fn fetch_sub(&self, val: u32, order: Ordering) -> u32

Subtracts from the current value, returning the previous value.

This operation wraps around on overflow.

fetch_sub takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that using Acquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.

Note: This method is only available on platforms that support atomic operations on u32.

§Examples
use std::sync::atomic::{AtomicU32, Ordering};

let foo = AtomicU32::new(20);
assert_eq!(foo.fetch_sub(10, Ordering::SeqCst), 20);
assert_eq!(foo.load(Ordering::SeqCst), 10);
1.34.0 · Source

pub fn fetch_and(&self, val: u32, order: Ordering) -> u32

Bitwise “and” with the current value.

Performs a bitwise “and” operation on the current value and the argument val, and sets the new value to the result.

Returns the previous value.

fetch_and takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that using Acquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.

Note: This method is only available on platforms that support atomic operations on u32.

§Examples
use std::sync::atomic::{AtomicU32, Ordering};

let foo = AtomicU32::new(0b101101);
assert_eq!(foo.fetch_and(0b110011, Ordering::SeqCst), 0b101101);
assert_eq!(foo.load(Ordering::SeqCst), 0b100001);
1.34.0 · Source

pub fn fetch_nand(&self, val: u32, order: Ordering) -> u32

Bitwise “nand” with the current value.

Performs a bitwise “nand” operation on the current value and the argument val, and sets the new value to the result.

Returns the previous value.

fetch_nand takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that using Acquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.

Note: This method is only available on platforms that support atomic operations on u32.

§Examples
use std::sync::atomic::{AtomicU32, Ordering};

let foo = AtomicU32::new(0x13);
assert_eq!(foo.fetch_nand(0x31, Ordering::SeqCst), 0x13);
assert_eq!(foo.load(Ordering::SeqCst), !(0x13 & 0x31));
1.34.0 · Source

pub fn fetch_or(&self, val: u32, order: Ordering) -> u32

Bitwise “or” with the current value.

Performs a bitwise “or” operation on the current value and the argument val, and sets the new value to the result.

Returns the previous value.

fetch_or takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that using Acquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.

Note: This method is only available on platforms that support atomic operations on u32.

§Examples
use std::sync::atomic::{AtomicU32, Ordering};

let foo = AtomicU32::new(0b101101);
assert_eq!(foo.fetch_or(0b110011, Ordering::SeqCst), 0b101101);
assert_eq!(foo.load(Ordering::SeqCst), 0b111111);
1.34.0 · Source

pub fn fetch_xor(&self, val: u32, order: Ordering) -> u32

Bitwise “xor” with the current value.

Performs a bitwise “xor” operation on the current value and the argument val, and sets the new value to the result.

Returns the previous value.

fetch_xor takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that using Acquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.

Note: This method is only available on platforms that support atomic operations on u32.

§Examples
use std::sync::atomic::{AtomicU32, Ordering};

let foo = AtomicU32::new(0b101101);
assert_eq!(foo.fetch_xor(0b110011, Ordering::SeqCst), 0b101101);
assert_eq!(foo.load(Ordering::SeqCst), 0b011110);
1.45.0 · Source

pub fn fetch_update<F>( &self, set_order: Ordering, fetch_order: Ordering, f: F, ) -> Result<u32, u32>
where F: FnMut(u32) -> Option<u32>,

Fetches the value, and applies a function to it that returns an optional new value. Returns a Result of Ok(previous_value) if the function returned Some(_), else Err(previous_value).

Note: This may call the function multiple times if the value has been changed from other threads in the meantime, as long as the function returns Some(_), but the function will have been applied only once to the stored value.

fetch_update takes two Ordering arguments to describe the memory ordering of this operation. The first describes the required ordering for when the operation finally succeeds while the second describes the required ordering for loads. These correspond to the success and failure orderings of AtomicU32::compare_exchange respectively.

Using Acquire as success ordering makes the store part of this operation Relaxed, and using Release makes the final successful load Relaxed. The (failed) load ordering can only be SeqCst, Acquire or Relaxed.

Note: This method is only available on platforms that support atomic operations on u32.

§Considerations

This method is not magic; it is not provided by the hardware, and does not act like a critical section or mutex.

It is implemented on top of an atomic compare-and-swap operation, and thus is subject to the usual drawbacks of CAS operations. In particular, be careful of the ABA problem if this atomic integer is an index or more generally if knowledge of only the bitwise value of the atomic is not in and of itself sufficient to ensure any required preconditions.

§Examples
use std::sync::atomic::{AtomicU32, Ordering};

let x = AtomicU32::new(7);
assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(7));
assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(7));
assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(8));
assert_eq!(x.load(Ordering::SeqCst), 9);
Source

pub fn try_update( &self, set_order: Ordering, fetch_order: Ordering, f: impl FnMut(u32) -> Option<u32>, ) -> Result<u32, u32>

🔬This is a nightly-only experimental API. (atomic_try_update)

Fetches the value, and applies a function to it that returns an optional new value. Returns a Result of Ok(previous_value) if the function returned Some(_), else Err(previous_value).

See also: update.

Note: This may call the function multiple times if the value has been changed from other threads in the meantime, as long as the function returns Some(_), but the function will have been applied only once to the stored value.

try_update takes two Ordering arguments to describe the memory ordering of this operation. The first describes the required ordering for when the operation finally succeeds while the second describes the required ordering for loads. These correspond to the success and failure orderings of AtomicU32::compare_exchange respectively.

Using Acquire as success ordering makes the store part of this operation Relaxed, and using Release makes the final successful load Relaxed. The (failed) load ordering can only be SeqCst, Acquire or Relaxed.

Note: This method is only available on platforms that support atomic operations on u32.

§Considerations

This method is not magic; it is not provided by the hardware, and does not act like a critical section or mutex.

It is implemented on top of an atomic compare-and-swap operation, and thus is subject to the usual drawbacks of CAS operations. In particular, be careful of the ABA problem if this atomic integer is an index or more generally if knowledge of only the bitwise value of the atomic is not in and of itself sufficient to ensure any required preconditions.

§Examples
#![feature(atomic_try_update)]
use std::sync::atomic::{AtomicU32, Ordering};

let x = AtomicU32::new(7);
assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(7));
assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(7));
assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(8));
assert_eq!(x.load(Ordering::SeqCst), 9);
Source

pub fn update( &self, set_order: Ordering, fetch_order: Ordering, f: impl FnMut(u32) -> u32, ) -> u32

🔬This is a nightly-only experimental API. (atomic_try_update)

Fetches the value, applies a function to it that it return a new value. The new value is stored and the old value is returned.

See also: try_update.

Note: This may call the function multiple times if the value has been changed from other threads in the meantime, but the function will have been applied only once to the stored value.

update takes two Ordering arguments to describe the memory ordering of this operation. The first describes the required ordering for when the operation finally succeeds while the second describes the required ordering for loads. These correspond to the success and failure orderings of AtomicU32::compare_exchange respectively.

Using Acquire as success ordering makes the store part of this operation Relaxed, and using Release makes the final successful load Relaxed. The (failed) load ordering can only be SeqCst, Acquire or Relaxed.

Note: This method is only available on platforms that support atomic operations on u32.

§Considerations

This method is not magic; it is not provided by the hardware, and does not act like a critical section or mutex.

It is implemented on top of an atomic compare-and-swap operation, and thus is subject to the usual drawbacks of CAS operations. In particular, be careful of the ABA problem if this atomic integer is an index or more generally if knowledge of only the bitwise value of the atomic is not in and of itself sufficient to ensure any required preconditions.

§Examples
#![feature(atomic_try_update)]
use std::sync::atomic::{AtomicU32, Ordering};

let x = AtomicU32::new(7);
assert_eq!(x.update(Ordering::SeqCst, Ordering::SeqCst, |x| x + 1), 7);
assert_eq!(x.update(Ordering::SeqCst, Ordering::SeqCst, |x| x + 1), 8);
assert_eq!(x.load(Ordering::SeqCst), 9);
1.45.0 · Source

pub fn fetch_max(&self, val: u32, order: Ordering) -> u32

Maximum with the current value.

Finds the maximum of the current value and the argument val, and sets the new value to the result.

Returns the previous value.

fetch_max takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that using Acquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.

Note: This method is only available on platforms that support atomic operations on u32.

§Examples
use std::sync::atomic::{AtomicU32, Ordering};

let foo = AtomicU32::new(23);
assert_eq!(foo.fetch_max(42, Ordering::SeqCst), 23);
assert_eq!(foo.load(Ordering::SeqCst), 42);

If you want to obtain the maximum value in one step, you can use the following:

use std::sync::atomic::{AtomicU32, Ordering};

let foo = AtomicU32::new(23);
let bar = 42;
let max_foo = foo.fetch_max(bar, Ordering::SeqCst).max(bar);
assert!(max_foo == 42);
1.45.0 · Source

pub fn fetch_min(&self, val: u32, order: Ordering) -> u32

Minimum with the current value.

Finds the minimum of the current value and the argument val, and sets the new value to the result.

Returns the previous value.

fetch_min takes an Ordering argument which describes the memory ordering of this operation. All ordering modes are possible. Note that using Acquire makes the store part of this operation Relaxed, and using Release makes the load part Relaxed.

Note: This method is only available on platforms that support atomic operations on u32.

§Examples
use std::sync::atomic::{AtomicU32, Ordering};

let foo = AtomicU32::new(23);
assert_eq!(foo.fetch_min(42, Ordering::Relaxed), 23);
assert_eq!(foo.load(Ordering::Relaxed), 23);
assert_eq!(foo.fetch_min(22, Ordering::Relaxed), 23);
assert_eq!(foo.load(Ordering::Relaxed), 22);

If you want to obtain the minimum value in one step, you can use the following:

use std::sync::atomic::{AtomicU32, Ordering};

let foo = AtomicU32::new(23);
let bar = 12;
let min_foo = foo.fetch_min(bar, Ordering::SeqCst).min(bar);
assert_eq!(min_foo, 12);
1.70.0 · Source

pub fn as_ptr(&self) -> *mut u32

Returns a mutable pointer to the underlying integer.

Doing non-atomic reads and writes on the resulting integer can be a data race. This method is mostly useful for FFI, where the function signature may use *mut u32 instead of &AtomicU32.

Returning an *mut pointer from a shared reference to this atomic is safe because the atomic types work with interior mutability. All modifications of an atomic change the value through a shared reference, and can do so safely as long as they use atomic operations. Any use of the returned raw pointer requires an unsafe block and still has to uphold the same restriction: operations on it must be atomic.

§Examples
use std::sync::atomic::AtomicU32;

extern "C" {
    fn my_atomic_op(arg: *mut u32);
}

let atomic = AtomicU32::new(1);

// SAFETY: Safe as long as `my_atomic_op` is atomic.
unsafe {
    my_atomic_op(atomic.as_ptr());
}

Trait Implementations§

Source§

impl Deref for OUTSTANDING_TRANSACTIONS

Source§

type Target = AtomicU32

The resulting type after dereferencing.
Source§

fn deref(&self) -> &AtomicU32

Dereferences the value.
Source§

impl LazyStatic for OUTSTANDING_TRANSACTIONS

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> Conv for T

Source§

fn conv<T>(self) -> T
where Self: Into<T>,

Converts self into T using Into<T>. Read more
Source§

impl<T> Downcast for T
where T: Any,

Source§

fn into_any(self: Box<T>) -> Box<dyn Any>

Convert Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.
Source§

fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>

Convert Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be further downcast into Rc<ConcreteType> where ConcreteType implements Trait.
Source§

fn as_any(&self) -> &(dyn Any + 'static)

Convert &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &Any’s vtable from &Trait’s.
Source§

fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)

Convert &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &mut Any’s vtable from &mut Trait’s.
Source§

impl<T> DowncastSync for T
where T: Any + Send + Sync,

Source§

fn into_any_arc(self: Arc<T>) -> Arc<dyn Any + Sync + Send>

Convert Arc<Trait> (where Trait: Downcast) to Arc<Any>. Arc<Any> can then be further downcast into Arc<ConcreteType> where ConcreteType implements Trait.
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T> GetSetFdFlags for T

Source§

fn get_fd_flags(&self) -> Result<FdFlags, Error>
where T: AsFilelike,

Query the “status” flags for the self file descriptor.
Source§

fn new_set_fd_flags(&self, fd_flags: FdFlags) -> Result<SetFdFlags<T>, Error>
where T: AsFilelike,

Create a new SetFdFlags value for use with set_fd_flags. Read more
Source§

fn set_fd_flags(&mut self, set_fd_flags: SetFdFlags<T>) -> Result<(), Error>
where T: AsFilelike,

Set the “status” flags for the self file descriptor. Read more
Source§

impl<T> Instrument for T

Source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<D> OwoColorize for D

Source§

fn fg<C>(&self) -> FgColorDisplay<'_, C, Self>
where C: Color,

Set the foreground color generically Read more
Source§

fn bg<C>(&self) -> BgColorDisplay<'_, C, Self>
where C: Color,

Set the background color generically. Read more
Source§

fn black(&self) -> FgColorDisplay<'_, Black, Self>

Change the foreground color to black
Source§

fn on_black(&self) -> BgColorDisplay<'_, Black, Self>

Change the background color to black
Source§

fn red(&self) -> FgColorDisplay<'_, Red, Self>

Change the foreground color to red
Source§

fn on_red(&self) -> BgColorDisplay<'_, Red, Self>

Change the background color to red
Source§

fn green(&self) -> FgColorDisplay<'_, Green, Self>

Change the foreground color to green
Source§

fn on_green(&self) -> BgColorDisplay<'_, Green, Self>

Change the background color to green
Source§

fn yellow(&self) -> FgColorDisplay<'_, Yellow, Self>

Change the foreground color to yellow
Source§

fn on_yellow(&self) -> BgColorDisplay<'_, Yellow, Self>

Change the background color to yellow
Source§

fn blue(&self) -> FgColorDisplay<'_, Blue, Self>

Change the foreground color to blue
Source§

fn on_blue(&self) -> BgColorDisplay<'_, Blue, Self>

Change the background color to blue
Source§

fn magenta(&self) -> FgColorDisplay<'_, Magenta, Self>

Change the foreground color to magenta
Source§

fn on_magenta(&self) -> BgColorDisplay<'_, Magenta, Self>

Change the background color to magenta
Source§

fn purple(&self) -> FgColorDisplay<'_, Magenta, Self>

Change the foreground color to purple
Source§

fn on_purple(&self) -> BgColorDisplay<'_, Magenta, Self>

Change the background color to purple
Source§

fn cyan(&self) -> FgColorDisplay<'_, Cyan, Self>

Change the foreground color to cyan
Source§

fn on_cyan(&self) -> BgColorDisplay<'_, Cyan, Self>

Change the background color to cyan
Source§

fn white(&self) -> FgColorDisplay<'_, White, Self>

Change the foreground color to white
Source§

fn on_white(&self) -> BgColorDisplay<'_, White, Self>

Change the background color to white
Source§

fn default_color(&self) -> FgColorDisplay<'_, Default, Self>

Change the foreground color to the terminal default
Source§

fn on_default_color(&self) -> BgColorDisplay<'_, Default, Self>

Change the background color to the terminal default
Source§

fn bright_black(&self) -> FgColorDisplay<'_, BrightBlack, Self>

Change the foreground color to bright black
Source§

fn on_bright_black(&self) -> BgColorDisplay<'_, BrightBlack, Self>

Change the background color to bright black
Source§

fn bright_red(&self) -> FgColorDisplay<'_, BrightRed, Self>

Change the foreground color to bright red
Source§

fn on_bright_red(&self) -> BgColorDisplay<'_, BrightRed, Self>

Change the background color to bright red
Source§

fn bright_green(&self) -> FgColorDisplay<'_, BrightGreen, Self>

Change the foreground color to bright green
Source§

fn on_bright_green(&self) -> BgColorDisplay<'_, BrightGreen, Self>

Change the background color to bright green
Source§

fn bright_yellow(&self) -> FgColorDisplay<'_, BrightYellow, Self>

Change the foreground color to bright yellow
Source§

fn on_bright_yellow(&self) -> BgColorDisplay<'_, BrightYellow, Self>

Change the background color to bright yellow
Source§

fn bright_blue(&self) -> FgColorDisplay<'_, BrightBlue, Self>

Change the foreground color to bright blue
Source§

fn on_bright_blue(&self) -> BgColorDisplay<'_, BrightBlue, Self>

Change the background color to bright blue
Source§

fn bright_magenta(&self) -> FgColorDisplay<'_, BrightMagenta, Self>

Change the foreground color to bright magenta
Source§

fn on_bright_magenta(&self) -> BgColorDisplay<'_, BrightMagenta, Self>

Change the background color to bright magenta
Source§

fn bright_purple(&self) -> FgColorDisplay<'_, BrightMagenta, Self>

Change the foreground color to bright purple
Source§

fn on_bright_purple(&self) -> BgColorDisplay<'_, BrightMagenta, Self>

Change the background color to bright purple
Source§

fn bright_cyan(&self) -> FgColorDisplay<'_, BrightCyan, Self>

Change the foreground color to bright cyan
Source§

fn on_bright_cyan(&self) -> BgColorDisplay<'_, BrightCyan, Self>

Change the background color to bright cyan
Source§

fn bright_white(&self) -> FgColorDisplay<'_, BrightWhite, Self>

Change the foreground color to bright white
Source§

fn on_bright_white(&self) -> BgColorDisplay<'_, BrightWhite, Self>

Change the background color to bright white
Source§

fn bold(&self) -> BoldDisplay<'_, Self>

Make the text bold
Source§

fn dimmed(&self) -> DimDisplay<'_, Self>

Make the text dim
Source§

fn italic(&self) -> ItalicDisplay<'_, Self>

Make the text italicized
Source§

fn underline(&self) -> UnderlineDisplay<'_, Self>

Make the text underlined
Make the text blink
Make the text blink (but fast!)
Source§

fn reversed(&self) -> ReversedDisplay<'_, Self>

Swap the foreground and background colors
Source§

fn hidden(&self) -> HiddenDisplay<'_, Self>

Hide the text
Source§

fn strikethrough(&self) -> StrikeThroughDisplay<'_, Self>

Cross out the text
Source§

fn color<Color>(&self, color: Color) -> FgDynColorDisplay<'_, Color, Self>
where Color: DynColor,

Set the foreground color at runtime. Only use if you do not know which color will be used at compile-time. If the color is constant, use either OwoColorize::fg or a color-specific method, such as OwoColorize::green, Read more
Source§

fn on_color<Color>(&self, color: Color) -> BgDynColorDisplay<'_, Color, Self>
where Color: DynColor,

Set the background color at runtime. Only use if you do not know what color to use at compile-time. If the color is constant, use either OwoColorize::bg or a color-specific method, such as OwoColorize::on_yellow, Read more
Source§

fn fg_rgb<const R: u8, const G: u8, const B: u8>( &self, ) -> FgColorDisplay<'_, CustomColor<R, G, B>, Self>

Set the foreground color to a specific RGB value.
Source§

fn bg_rgb<const R: u8, const G: u8, const B: u8>( &self, ) -> BgColorDisplay<'_, CustomColor<R, G, B>, Self>

Set the background color to a specific RGB value.
Source§

fn truecolor(&self, r: u8, g: u8, b: u8) -> FgDynColorDisplay<'_, Rgb, Self>

Sets the foreground color to an RGB value.
Source§

fn on_truecolor(&self, r: u8, g: u8, b: u8) -> BgDynColorDisplay<'_, Rgb, Self>

Sets the background color to an RGB value.
Source§

fn style(&self, style: Style) -> Styled<&Self>

Apply a runtime-determined style
Source§

impl<T> Pipe for T
where T: ?Sized,

Source§

fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> R
where Self: Sized,

Pipes by value. This is generally the method you want to use. Read more
Source§

fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> R
where R: 'a,

Borrows self and passes that borrow into the pipe function. Read more
Source§

fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> R
where R: 'a,

Mutably borrows self and passes that borrow into the pipe function. Read more
Source§

fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
where Self: Borrow<B>, B: 'a + ?Sized, R: 'a,

Borrows self, then passes self.borrow() into the pipe function. Read more
Source§

fn pipe_borrow_mut<'a, B, R>( &'a mut self, func: impl FnOnce(&'a mut B) -> R, ) -> R
where Self: BorrowMut<B>, B: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.borrow_mut() into the pipe function. Read more
Source§

fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
where Self: AsRef<U>, U: 'a + ?Sized, R: 'a,

Borrows self, then passes self.as_ref() into the pipe function.
Source§

fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
where Self: AsMut<U>, U: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.as_mut() into the pipe function.
Source§

fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
where Self: Deref<Target = T>, T: 'a + ?Sized, R: 'a,

Borrows self, then passes self.deref() into the pipe function.
Source§

fn pipe_deref_mut<'a, T, R>( &'a mut self, func: impl FnOnce(&'a mut T) -> R, ) -> R
where Self: DerefMut<Target = T> + Deref, T: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.deref_mut() into the pipe function.
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Pointee for T

Source§

type Pointer = u32

Source§

fn debug( pointer: <T as Pointee>::Pointer, f: &mut Formatter<'_>, ) -> Result<(), Error>

Source§

impl<T> PolicyExt for T
where T: ?Sized,

Source§

fn and<P, B, E>(self, other: P) -> And<T, P>
where T: Policy<B, E>, P: Policy<B, E>,

Create a new Policy that returns Action::Follow only if self and other return Action::Follow. Read more
Source§

fn or<P, B, E>(self, other: P) -> Or<T, P>
where T: Policy<B, E>, P: Policy<B, E>,

Create a new Policy that returns Action::Follow if either self or other returns Action::Follow. Read more
Source§

impl<P, T> Receiver for P
where P: Deref<Target = T> + ?Sized, T: ?Sized,

Source§

type Target = T

🔬This is a nightly-only experimental API. (arbitrary_self_types)
The target type on which the method may be called.
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<T> Tap for T

Source§

fn tap(self, func: impl FnOnce(&Self)) -> Self

Immutable access to a value. Read more
Source§

fn tap_mut(self, func: impl FnOnce(&mut Self)) -> Self

Mutable access to a value. Read more
Source§

fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
where Self: Borrow<B>, B: ?Sized,

Immutable access to the Borrow<B> of a value. Read more
Source§

fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
where Self: BorrowMut<B>, B: ?Sized,

Mutable access to the BorrowMut<B> of a value. Read more
Source§

fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
where Self: AsRef<R>, R: ?Sized,

Immutable access to the AsRef<R> view of a value. Read more
Source§

fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
where Self: AsMut<R>, R: ?Sized,

Mutable access to the AsMut<R> view of a value. Read more
Source§

fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
where Self: Deref<Target = T>, T: ?Sized,

Immutable access to the Deref::Target of a value. Read more
Source§

fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
where Self: DerefMut<Target = T> + Deref, T: ?Sized,

Mutable access to the Deref::Target of a value. Read more
Source§

fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self

Calls .tap() only in debug builds, and is erased in release builds.
Source§

fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self

Calls .tap_mut() only in debug builds, and is erased in release builds.
Source§

fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
where Self: Borrow<B>, B: ?Sized,

Calls .tap_borrow() only in debug builds, and is erased in release builds.
Source§

fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
where Self: BorrowMut<B>, B: ?Sized,

Calls .tap_borrow_mut() only in debug builds, and is erased in release builds.
Source§

fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
where Self: AsRef<R>, R: ?Sized,

Calls .tap_ref() only in debug builds, and is erased in release builds.
Source§

fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
where Self: AsMut<R>, R: ?Sized,

Calls .tap_ref_mut() only in debug builds, and is erased in release builds.
Source§

fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
where Self: Deref<Target = T>, T: ?Sized,

Calls .tap_deref() only in debug builds, and is erased in release builds.
Source§

fn tap_deref_mut_dbg<T>(self, func: impl FnOnce(&mut T)) -> Self
where Self: DerefMut<Target = T> + Deref, T: ?Sized,

Calls .tap_deref_mut() only in debug builds, and is erased in release builds.
Source§

impl<T> TryConv for T

Source§

fn try_conv<T>(self) -> Result<T, Self::Error>
where Self: TryInto<T>,

Attempts to convert self into T using TryInto<T>. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V

Source§

impl<T> WithSubscriber for T

Source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

impl<T> ErasedDestructor for T
where T: 'static,